Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shao-Wen Chen and Han-Dong
 Yin*

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059,
People's Republic of China

Correspondence e-mail:
handongyin@Ictu.edu.cn

Key indicators

Single-crystal X-ray study

$T=298 \mathrm{~K}$

Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.037$
$w R$ factor $=0.120$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
The one-dimensional chain compound n-butyl-dichloro[2-oxido-1-naphthaldehyde (4-pyridylcarbonyl)hydrazonato]tin(IV) methanol disolvate

In the title complex, $\left[\mathrm{Sn}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}\right) \mathrm{Cl}_{2}\right] \cdot 2 \mathrm{CH}_{4} \mathrm{O}$, the Sn atom is in a distorted octahedral geometry, with $\mathrm{Sn}-\mathrm{O}$ distances of 2.093 (3) and 2.125 (3) A. The tridentate Schiff base coordinates to the Sn via the azomethine N atom, the hydroxyl O atom and the carbonyl O atom. The complex is stabilized by intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a one-dimensional chain.

Comment

The structure of the title compound, (I) (Fig. 1), shows that the complex is a monomer in which the Sn atom adopts a distorted octahedral geometry, being coordinated by two O atoms, one C atom, two Cl atoms and one N atom. The tridentate Schiff base coordinates to the Sn atom via the azomethine N atom, the hydroxyl O atom and the carbonyl O atom. The distorted octahedral geometry around the Sn atom (Table 1) is the result of the strain imposed by the tridentate Schiff base ligand and of the constraints imposed by the five- and six-membered chelate rings. The dihedral angle between the two rings is $0.1(2)^{\circ}$, indicating that they are coplanar. In the title molecule, the $\operatorname{Sn} 1-\mathrm{N} 1$ distance is 2.153 (4) \AA, which is close to the sum of the non-polar covalent radii ($2.15 \AA$; Sanderson, 1967), indicating a strong $\mathrm{Sn}-\mathrm{N}$ interaction. The O atoms coordinate to the Sn atom with two shorter and one longer $\mathrm{Sn}-\mathrm{O}$ bond (Table 1). A search of the Cambridge Structural Database (Version 5.27; Allen, 2002) showed only four previous structures containing an $\mathrm{SnO}_{2} \mathrm{Cl}_{2} \mathrm{NC}$ chromophore (Camacho-Camacho et al., 1998; Jímenez-Pérez et al., 2000; Vicente et al., 1992).

(I)

The packing of the unit cell (Fig. 2) shows that the molecules form a one-dimensional chain connected by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Figure 1
The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

Experimental

The reaction was carried out under a nitrogen atmosphere with the use of standard Schlenk techniques. The Schiff base (0.2913 g , $1.0 \mathrm{mmol})$ was added to a mixture of ethanol and benzene $(1: 3,30 \mathrm{ml})$ with sodium ethoxide $(0.068 \mathrm{~g}, 1.0 \mathrm{mmol})$. The mixture was stirred for $0.5 \mathrm{~h}, \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{SnCl}_{3}(0.2822 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added, and the mixture was further stirred and refluxed for 10 h . After cooling to room temperature, the solution was filtered and evaporated to dryness. The resulting solid was then recrystallized from dichloromethane-hexane $(3: 1 \mathrm{v} / v)$ (m.p. $523-524 \mathrm{~K})$. Analysis calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Sn}$: C 46.03, H 4.70, N 7.00%; found: C 45.95, H 4.52, N 6.91%.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Sn}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\right] \cdot \mathrm{Cl}_{2} \cdot-} \\
& \quad 2 \mathrm{CH}_{4} \mathrm{O} \\
& M_{r}=600.07 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=12.896(3) \AA \\
& b=13.523(3) \AA \\
& c=15.000(4) \AA \\
& \beta=98.259(3)^{\circ}
\end{aligned}
$$

$V=2588.7(11) \AA^{3}$
$Z=4$
$D_{x}=1.540 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.23 \mathrm{~mm}^{-1}$
$T=298(2) \mathrm{K}$
Block, colourless
$0.43 \times 0.42 \times 0.37 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.621, T_{\text {max }}=0.660$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.120$
$S=1.01$
4552 reflections
300 parameters
H-atom parameters constrained

Figure 2
The crystal packing of the title complex. Dashed lines indicate hydrogen bonds. H atoms have been omitted.

Table 1
Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

$\mathrm{Sn} 1-\mathrm{O} 1$	$2.093(3)$	$\mathrm{Sn} 1-\mathrm{N} 1$	$2.153(4)$
$\mathrm{Sn} 1-\mathrm{C} 18$	$2.123(5)$	$\mathrm{Sn} 1-\mathrm{Cl} 1$	$2.4810(17)$
$\mathrm{Sn} 1-\mathrm{O} 2$	$2.125(3)$	$\mathrm{Sn} 1-\mathrm{Cl} 2$	$2.5172(15)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 18$	$100.3(2)$	$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{Cl} 1$	$88.82(10)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 2$	$157.85(12)$	$\mathrm{N} 1-\mathrm{Sn} 1-\mathrm{Cl} 1$	$86.46(11)$
$\mathrm{C} 18-\mathrm{Sn} 1-\mathrm{O} 2$	$101.8(2)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{Cl} 2$	$89.57(11)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{N} 1$	$83.08(13)$	$\mathrm{C} 18-\mathrm{Sn} 1-\mathrm{Cl} 2$	$98.9(2)$
$\mathrm{C} 18-\mathrm{Sn} 1-\mathrm{N} 1$	$176.1(2)$	$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{Cl} 2$	$88.37(10)$
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{N} 1$	$74.78(13)$	$\mathrm{N} 1-\mathrm{Sn} 1-\mathrm{Cl} 2$	$82.99(11)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{Cl} 1$	$89.20(11)$	$\mathrm{Cl} 1-\mathrm{Sn} 1-\mathrm{Cl} 2$	$169.45(5)$
$\mathrm{C} 18-\mathrm{Sn} 1-\mathrm{Cl} 1$	$91.6(2)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 \cdots O1	0.82	2.05	$2.858(1)$	170
O4-H4 \cdots O3	0.82	1.88	$2.686(1)$	166

All H atoms were placed geometrically and treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ (aromatic), $0.97 \AA$ $\left(\mathrm{CH}_{2}\right)$ and $0.96 \AA$ (methyl), and $\mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$. The $U_{\text {iso }}(\mathrm{H})$ values were set at $1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ for the methyl and hydroxy H atoms and at $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for the other H atoms. The highest density peak is located $1.18 \AA$ from atom C19.

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystal Materials, Shandong University, People's Republic of China.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

Camacho-Camacho, C., Tlahuext, H., Nöth, H. \& Contreras, R. (1998). Heteroatom Chem, 9, 321-326.
Jímenez-Pérez, V. M., Camacho-Camacho, C., Güizado-Rodríguez, M., Nöth, H. \& Contreras, R. (2000). J. Organomet. Chem. 614-615, 283-293.

Sanderson, R. T. (1967). Inorganic Chemistry, p. 74. New York: Reinhold. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Vicente, J., Chicote, M.-T., Ramírez-de-Arellano, M. C. \& Jones, P. G. (1992). J. Chem. Soc. Dalton Trans. pp. 1839-1845.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

